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ABSTRACT

The assimilation of water vapor mass mixing ratio derived from total lightning data from theGeostationary

Lightning Mapper (GLM) within a three-dimensional variational (3DVAR) system is evaluated for the

analysis and short-term forecast (#6 h) of a high-impact convective event over the northern Great Plains in

theUnited States. Building on recent work, the lightning data assimilation (LDA)method adjusts water vapor

mass mixing ratio within a fixed layer depth above the lifted condensation level by assuming nearly water-

saturated conditions at observed lightning locations. In this algorithm, the total water vapor mass added by

the LDA is balanced by an equal removal outside observed lightning locations. Additional refinements were

also devised to partially alleviate the seasonal and geographical dependence of the original scheme. To gauge

the added value of lightning, radar data (radial velocity and reflectivity) were also assimilated with or without

lightning. Although the method was evaluated in quasi–real time for several high-impact weather events

throughout 2018, this work will focus on one specific, illustrative severe weather case wherein the control

simulation—which did not assimilate any data—was eventually able to initiate and forecast the majority of

the observed storms. Given a relatively reasonable forecast in the control experiment, the GLM and radar

assimilation experiments were still able to improve the short-term forecast of accumulated rainfall and

composite radar reflectivity further, as measured by neighborhood-based metrics. These results held whether

the simulations made use of one single 3DVAR analysis or high-frequency (10min) successive cycling over a

1-h period.

1. Introduction

The timeliness and accuracy of severe weather warn-

ings still remain a paramount challenge, given the need

to resolve complex nonlinear processes over a contin-

uum spanning a large range of scales and involving

several different physical processes (e.g., Stensrud et al.

2009). In addition to model errors, the accuracy of nu-

merical weather predictions (NWP) is strongly tied to

biases and errors contained in the initial conditions of-

ten derived or downscaled from larger-scale model

data. To partially alleviate this drawback, several data

assimilation (DA) methods aimed at ingesting in-

formation from multiple observing platforms into NWP

models have been developed (e.g., Park and Xu 2013).

For convective-scale (#3 km) NWP, considerable

advances have been made in assimilation methods for

radar reflectivity and Doppler radial velocity data

(e.g., Evensen 1994, 2003; Houtekamer and Mitchell

1998; Zhang 2005; Zhang et al. 2009; Aksoy et al. 2009;

Godinez et al. 2012; Wang and Wang 2017). Recent

DA works have demonstrated significant improvements

in short-term forecasts (#6 h) of high-impact weather

events ranging from individual severe thunderstorms

(e.g., Stensrud and Gao 2010; Schenkman et al. 2011;

Yussouf et al. 2016; Jones et al. 2016) to tropical cy-

clones (e.g., Zhao and Xue 2009) with the help of radar

data. Many areas of the United States, however, suffer

from poor coverage by the U.S. National Weather Ser-

vice (NWS) operational Weather Surveillance Radar–

1988 Doppler (WSR-88D) network (e.g., Zhang et al.

2011). Over the United States, regions particularly vul-

nerable to poor radar coverage are mountainous terrain
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of the west (beam blockage) often prone to flash flood-

ing or oceanic regions beyond the range of coastal radars

where tropical systems develop and eventually intensify.

In these circumstances, atmospheric and oceanic mea-

surements from spaceborne, remote sensing platforms

play a pivotal role in filling this gap (e.g., Jones et al.

2018; Minamide and Zhang 2018; Zhang et al. 2018). To

complement the coverage of surface lightning detection

networks over most of the western hemisphere, a joint

collaboration between NOAA and NASA fostered

the successful deployments of the Geostationary Oper-

ational Environmental Satellite-16 and -17 (GOES-16

and -17) (Gurka et al. 2006; Goodman et al. 2013). For

convection-allowing models, lightning data mapped

from space can systematically identify areas of deep,

mixed-phase convection, which can be readily assimi-

lated into NWPs.

Earlier lightning data assimilation (LDA) studies

used cloud-to-ground (CG) flash data (e.g., Jones and

Macpherson 1997a,b; Alexander et al. 1999; Chang et al.

2001; Papadopoulos et al. 2005; Pessi and Businger 2009)

or a combination of CG and limited-area total lightning

data (Mansell et al. 2007). These studies devised empiri-

cal relationships to modify or replace latent heating rates

from a convection parameterization scheme, which are

not suitable for convection-allowing scales. Observa-

tional and cloud-scale modeling studies have shown

much higher correlations of storm properties with

total lightning rates than with CG flash rates alone, as

intracloud (IC) flashes generally vastly outnumber

CG flashes (e.g., MacGorman et al. 1989; Carey and

Rutledge 1998; Wiens et al. 2005; Kuhlman et al. 2006;

Fierro et al. 2006; Deierling and Petersen 2008;

MacGorman et al. 2011; Boccippio et al. 2001; Medici

et al. 2017; Weiss et al. 2012).

Thus, total lightning data are considered more appro-

priate for convection-allowing applications (Marchand

and Fuelberg 2014; Fierro et al. 2012a, 2014, 2015a,

hereafter F15; H. Wang et al. 2017, 2018; Mansell 2014;

Fierro et al. 2016, hereafter F16). Some of these works

highlighted that the assimilation of pseudo-GLM total

lightning [i.e., ground-based detections scaled to as-

sumed Geostationary Lightning Mapper (GLM) pa-

rameters] alone using either simple nudging or more

sophisticated variational or ensemble Kalman filter

techniques was able to notably improve analyses

(Mansell 2014; Allen et al. 2016) and short-term fore-

casts of convective events (F16). F16 underscored,

however, that the added value of lightning data assimi-

lation (LDA) to the forecasts remains relatively minor

in areas that already have good spatiotemporal coverage

by the WSR-88D network. This is expected, given that

the level of convective-scale information contained

within successive volumetric radar scans far surpasses

that of the (accumulated) two-dimensional flash densi-

ties derived from either ground-based or spaceborne

platforms.

The present variational LDA method builds upon an

approach first presented and evaluated in F16. At ob-

served lightning locations, F16’s method imposed in-

cremental adjustments (i.e., increases) of water vapor

mass mixing ratio (qy) toward or near saturation within

a confined layer, which promoted the initiation of con-

vection through local enhancements of thermal buoy-

ancy (Houze 1993; Braun 2002; Lopez and Bauer 2007;

Caumont et al. 2010; Fierro et al. 2012b). Despite no-

table improvements in the short-term forecasts of

storm structure, rainfall and reflectivity, F16’s method

had some shortcomings, which include: (i) the inability

to effectively suppress spurious convection, (ii) the

tendency to notably exacerbate any wet biases present

in the simulation assimilating no data, and (iii) the qy
mass being added was not balanced by an equal removal

in the domain prior to performing the 3DVAR analysis.

As will be described later, the proposed LDA scheme in

this study offers an attempt to address (ii) and (iii).

The present study builds upon F16 by: (i) testing the

variational LDA approach using the total lightning

densities derived from the GLM in lieu of ground-

based systems, (ii) combining the assimilation of GLM

with radar data (radial velocity and reflectivity) in a

variational framework (without the use of a cloud

analysis scheme), and (iii) by extending the LDA al-

gorithm such that any water vapor mass added in the

pseudo qy observations is offset by an equal removal

outside lightning locations. Additionally, the proposed

LDA method is independent of flash rate. The chief

motivation for this research is to leverage the system-

atic availability of GLM-observed total lightning data

over most of the western hemisphere, which provide

continuous monitoring of electrified convection over

large areas devoid of ground-based observations.

Although the present LDA scheme, including its

parallel experiments described later (Table 1), was

tested in quasi–real time for about a dozen of cases

throughout 2018, this study will place emphasis on one

illustrative case study: the 7 June 2018 severe weather

outbreak over the northern plains of the United States,

which consisted of several mesoscale convective systems

(MCSs) in addition to some isolated severe storm cells.

This case was deemed broadly representative because

the improvements and limitations seen did not stand out

as particularly better or worse. Additionally, this case

was the only one with a variety of storm modes entirely

captured by the domain throughout the 6-h forecast

period. Given the small number of cases tested thus far
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and the relative embryonic stage of data assimilation

efforts involving spaceborne total lightning data in the

variational framework–let alone in combination with

radar data – we believe that focusing one case study

herein is reasonable. Additional rationales for select-

ing this case are: (i) the MCSs and isolated cells pro-

duced sufficient amount of lightning to perform the DA,

(ii) the varying evolutions of individual systems with one

of the major MCSs dissipating quickly, in contrast to

others growing upscale, and (iii) the control forecast

(without data assimilation) already produced a relatively

reasonable forecast of the main storms. It will be shown

that, despite a relatively good control forecast, the vari-

ational assimilation of either lightning and/or radar data

(radial winds and reflectivity fields) is still able to improve

the short-term evolution of some of the main storms.

2. Brief description of the synoptic setup

At about 0000 UTC 7 June 2018, large-scale envi-

ronmental conditions were favorable for the develop-

ment of organized convection over most of Nebraska

and Iowa in the United States. The 0000 UTC analysis

from the 13-km Rapid Refresh [(RAP), formerly the

Rapid Update Cycle (RUC); Benjamin et al. (2004)]

(Fig. 1) over the simulation domain (Fig. 2) indicated

the presence of widespread, strong inertial instability

with surface-based convective available potential energy

(CAPE) values ranging between 2000 and 45001 J kg21

over most of these two states coupled with overall weak

(.250Jkg21) surface-based convective inhibition (CIN,

Figs. 1a,b). The presence of a quasi-stationary surface

boundary (Fig. 1) in central Iowa and Nebraska aided

convective development further in these areas, which

were characterized by near-surface (2m) temperatures

greater than 300K (278–338C, Fig. 1d) with dewpoints

nearing 290K (158–208C, Fig. 2c). Note that areas with

CIN,2200 J kg21 near or along this boundary indicate

where deepmoist convectionwas ongoing in the analysis

(Figs. 1b and 3b). Over central Iowa and far eastern

Nebraska, deep layer wind shear (not shown) was mar-

ginal at best [20–30kt (1 kt ’ 0.5144ms21)] to support

organized convection. Over western Nebraska, however,

a strengthening (30–401 kt) low-level jet later in the

evening hours favored upscale growth (Fig. 3b) into an

MCS. Both of these systems produced several dozen se-

vere wind and hail reports (not shown). Because of these

widespread favorable conditions, additional severe-

warned storms developed over this area (Fig. 3b),

which will be discussed as needed during the analysis.

3. Data used for assimilation and validation

As indicated in the introduction, this work makes use

of total lightning data from the GLM instrument on

board the GOES-16 satellite. The camera pixels of the

GLM detect lightning activity day and night with a

horizontal resolution ranging between about 8 km

near the center of the field of view to about 12 km near

its edges with an expected daily averaged detection

efficiency exceeding 70% (Goodman et al. 2013;

Rudlosky et al. 2019). Based on evaluation studies of

its predecessor instrument–the Lightning Imaging

Sensor (LIS, Christian et al. 1999; Albrecht et al.

2016)–the detection efficiency of the GLM will likely

vary depending on the time of day, geographical lo-

cation (e.g., Fuchs et al. 2016) and optical cloud depth

(Yoshida et al. 2009). The basic lightning detections

from the GLM are pixel-level lightning optical energy

‘‘events,’’ which are algorithmically combined first

into groups and then flashes. In this study, only the

flash product will be considered, which is defined as

one or more lightning groups that satisfy temporal and

spatial coincidence thresholds [cf. Fig. 5 in Goodman

et al. (2013) for an illustration]. As indicated in Mach

et al. (2007), a group could be viewed as a single

lightning pulse (e.g., return stroke) spanning multiple

pixel events, and a flash as an amalgamation of one or

TABLE 1. The left column lists the nomenclature/abbreviations used for all the simulations/experiments analyzed in this study. The

second column from the left briefly describes the type of experiments. The second column from the right indicates the type of data that

were assimilated with ‘‘dBZ’’ standing for radar reflectivity and ‘‘Vr’’ for radial velocity. The right column shows which model variable(s)

is (are) impacted by the respective assimilation experiments with the symbols used to identify those variables bearing their usual meaning.

For convenience, the experiments are listed in the order they appear in the text, which is the same as Fig. 3.

Experiments Description Data assimilated Model variables impacted

CTRL Control run None None

GLM Lightning assimilation run GLM flash density rates qy (LCL–LCL 1 3 km)

RAD Radar data assimilation run Vr and dBZ qr, qg, qs, qh, u, y, w, u

RAD 1 GLM Lightning 1 radar assimilation run GLM flash density rates, Vr, dBZ qy (LCL–LCL 1 3 km), qr, qg, qs,

qh, u, y, w, u

GLM CONS Lightning assimilation run with balanced

qy field prior to the 3DVAR analysis

GLM flash density rates qy
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more lightning pulses (e.g., negative CG flash producing

multiple return strokes). Each flash is associated with a

latitude–longitude coordinate of its pixel centroid. For

the modeling experiments, the lightning flash data cen-

troids were accumulated for the 1-h period prior to the

initialization time of the free forecast (viz., 2300 UTC

6 June–0000 UTC 7 June), and then projected onto the

domain’s uniform 3-km Mercator grid (Fig. 2).

Following F16, the modeled reflectivity fields are eval-

uated against observed composite radar reflectivity fields

from the National Severe Storms Laboratory (NSSL)

Multi-Radar Multi-Sensor (MRMS) product (Zhang et al.

2011; Smith et al. 2016), available in 5-min increments

with a horizontal grid spacing of 0.018. For the assimilation,

WSR-88D Level-II data (reflectivity factor, mean radial

velocity, and spectrum width) were obtained from the

National Centers for Environmental Information.1

The simulated accumulated precipitation fields were

evaluated against the National Centers for Environmental

Prediction’s stage IV2 multisensor hourly rainfall accumu-

lation estimates (Baldwin and Mitchell 1997). To compare

model and observations, the hourly stage-IV data were re-

mapped from the native 4-km polar stereographic grid onto

the 3-km Mercator grid of the simulation domain (Fig. 2).

4. Simulations setup

a. Model grid and physics configuration

The forecast model used in this study is the three-

dimensional compressible nonhydrostatic WRF Model

(version 3.6.1) with Advanced Research WRF (ARW)

dynamic solver (WRF-ARW, Skamarock and Klemp

2008). The DA experiments are performed on one do-

main with a uniform horizontal grid spacing of 3 km

FIG. 1. RAP analysis output at 0000UTC 7 Jun 2018 of (a) surface-based CAPE (J kg21), (b) surface-based CIN (J kg21), and 2mAGL

(c) dewpoint temperature (K) and (d) temperature (K). The position of the surface boundary is shown as a black scalloped–triangled curve

in each panel for reference. The NWS operational sounding site at North Platte, NE (LBF), is marked by a black star.

1 http://www.ncdc.noaa.gov/. 2 https://www.eol.ucar.edu.
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and horizontal dimensions in grid points of 661 3 481

(Fig. 2). The stretched vertical grid has 35 levels with its

top at 50 hPa (;20 km) and the computational time step

is 10 s. The initial and time-dependent lateral boundary

conditions were derived from the 3-hourly, 12-kmNorth

American Mesoscale Forecast System (NAM) initial-

ized at 0000 UTC 7 June 2018 and subsequent forecast

data for a 6-h period. Because this work solely focuses

on short-term forecasts (#6 h), the simulations are

ended at 0600 UTC 7 June.

Convection was ongoing in the simulation domain at the

analysis time (i.e., 0000 UTC 7 June, Figs. 1 and 3). As in

F16, nomodel spinup was performed prior to the 3DVAR

analysis, as conducting the DAwhen observed convection

is active in the target area facilitates the qualitative and

quantitative analysis of the impacts of the respective DA

procedures. More specifically, the study will illustrate how

the assimilation of GLM lightning and/or radar data will

help hasten the development of most of the observed

storms and, in turn, improve the placement and intensity of

some of the storm-scale objects of interest.

The simulations employed the NSSL two-moment,

four-ice category bulk microphysics scheme (Ziegler 1985;

Mansell et al. 2010;Mansell andZiegler 2013).No cumulus

parameterization is used. The boundary layer is parame-

terized following the 1.5-order closure Mellor–Yamada

scheme (Mellor and Yamada 1982) turbulence ki-

netic energy scheme adapted by Janjić (1994) with

Monin–Obukhov–Janjić similarity theory for the subgrid-

scale turbulence processes (Chen et al. 1997). Lower

boundary conditions for the boundary layer fluxes are

provided by the Unified Noah land surface model

(Ek et al. 2003). Atmospheric radiation is parameterized

followingDudhia (1989) for the shortwaves and theRapid

Radiative Transfer Model (RRTM) for the longwaves

(Mlawer et al. 1997) and called by themodel every 10min.

b. Data assimilation procedures

This work makes use of an upgraded version of the

three-dimensional variational data assimilation system

initially developed for the Advanced Regional Pre-

diction System (ARPS) (Gao et al. 1999; Xue et al. 2001,

2003; Gao et al. 2004; Hu et al. 2006a,b; Stensrud and

Gao 2010; Ge et al. 2010, 2012; Gao et al. 2013) referred

to as theNational Severe Storms LaboratoryExperimental

Warn-on-Forecast System for 3DVAR (NEWS3DVAR;

Gao et al. 2016; Y. Wang et al. 2018). Though there are

many advanced DA methods which could be alterna-

tively employed to assimilate lightning and/or radar data

(e.g., Park and Xu 2013; Mansell 2014; Allen et al. 2016;

H. Wang et al. 2017, 2018), NEWS3DVAR is chosen for

its efficiency and the need for rapid delivery of high-

resolution convective-scale NWP products to the end

users for future real-time applications.

The performance testing of the LDAmethod follows a

similar set of experiments as in F16 (Table 1). A control

FIG. 2. Sketch of the simulation domain (3-km horizontal grid spacing) spanning the

north-central Great Plains of the United States with the black dots denoting the locations

of the WSR-88D sites used and tested in the NEW3DVAR code. The U.S. states are

indicated by their usual abbreviations in gray italicized fonts.
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run with no data assimilation (labeled as CTRL)

is evaluated against the following DA experiments:

(i) 3DVAR assimilation of flash density data from the

GLM in Fig. 3a (denoted as GLM), (ii) 3DVAR as-

similation of Level II radial velocity and radar re-

flectivity data (RAD), (iii) the combination of both

(RAD1GLM), and (iv) the same as GLM but with qy
pseudo-observations having equal amounts of qy mass

added and removed throughout the domain (GLM

CONS). Table 1 summarizes which variable(s) were

adjusted in each experiment with the two following

subsections describing their respective 3DVAR setup.

To provide a preliminary, broader picture of the ef-

fectiveness of the assimilation procedures, a first set

of experiments employing only one 3DVAR analysis

(viz., at 0000 UTC) was performed followed by a second

set using successive 3DVAR cycling with 10-min fre-

quency for both radar and lightning over a 1 h period

prior to 0000 UTC. A chief motivation for high-frequency

(#15min) cycling in cloud-scale DA applications is

its ability to better depict the rapid evolution and

movement of convective-scale events leading to more

accurate forecasts (e.g., Gao and Stensrud 2012). Ad-

ditionally, the sequential assimilation of observations

has been shown to notably help alleviate model spin up

issues often arising from the downscaling of coarser-

resolution data (e.g., reanalysis datasets) onto the finer-

scale model grid. This is because high-frequency cycling

takes greater advantage of the observations by intro-

ducing a larger amount of information from these ob-

servations with more frequent smaller adjustments at

finer scales. For convective-scale applications, however,

cycles generally exceeding 30min to 1 h will be more

prone to generate larger analysis increments and, thus,

to overfit the observational data. Additionally, such

longer cycles can cause temporal representation errors

(e.g., Gao et al. 2004; Gao and Stensrud 2012). When

assimilating radar reflectivity variationally as done

herein without the usage of cycling, the initialization

problem will more likely become underdetermined

because reflectivity factor is a function of three vari-

ables (as described in the subsections below). When

assimilating both lightning and radar data without cy-

cling, the initialization will thus be more likely to be

underdetermined.

The cycling frequency for the GLM and/or radar data

used was 10min to allow the variational analyses to

better depict/capture the movement and evolution of

individual storm-scale objects (e.g., Gao et al. 2013).

Because this work chiefly focuses on the GLM lightning,

the 3DVAR cycling experiments herein were conducted

over the same accumulation interval selected in

the original GLM experiment, namely from 2300 UTC

6 June to 0000 UTC 7 June 2018. While the cycled

GLM-based experiments assimilate the same lightning

information with these settings, two salient differences

must be underscored for the cycled RAD-based ex-

periments with respect to their original counterpart,

which are: (i) the usage of notably more storm-scale

information (radial winds and mass mixing ratios) and

(ii) the usage of the 1200 UTC NAM forecast data to

derive the initial conditions for the first cycle at 2300 UTC.

Thus, consideration must be taken when comparing

their respective forecast performances.

FIG. 3. (a) GLM-derived 1-h flash densities (per 9 km2) accumulated between 2300UTC 6 Jun until the analysis time at 0000UTC 7 Jun

2018. (b) Composite radar reflectivity fields (dBZ) constructed using Level II data within a 5-min interval centered at 0000 UTC 7 Jun

2018. For reference, a black star denotes the location of the soundings discussed in the analysis.
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Multipass recursive filters from larger to finer length

scales were shown to generally yield superior forecast

performance over single-pass 3DVARmethods (Xie et al.

2011; Li et al. 2010). This study makes use of a two-pass

recursive filter, with each pass employing a prescribed,

fixed horizontal and vertical decorrelation length scale

for its control variables–defined in the subsections below.

1) RADAR

In this work, volumetric WSR-88D scans of Level II

radial velocity and reflectivity factor were assimilated.

Prior to performing the DA, the Level II data from each

radar sites (Fig. 2) are quality-controlled (e.g., de-aliasing

radial velocity, removing nonmeteorological scatters)

and interpolated onto theWRFgrid for thinning purpose.

When reflectivity data from multiple radars overlap at a

given grid point, the largest value is chosen. Akin to F16,

only full radar volumes contained within a 5min interval

centered on the 3DVAR analysis time were employed.

Radar observations are processed and assimilated by

volumes and not by individual tilts. Thus, the time lag

induced by each sequential elevation sweep is not ac-

counted for in this DA setup.

In the upgraded version of the 3DVAR program used

herein (Gao et al. 2004; Gao and Stensrud 2012; Gao

et al. 2016; Y. Wang et al. 2018), the capability for as-

similating radar reflectivity in the 3DVAR frame-

work was examined, which considers adjustments

to the mass mixing ratios for rainwater, snow and

hail/graupel. The adjustments made to these hydro-

meteor species are dependent on the local ambient

temperature such that, for instance, snow mass is not

systematically introduced at temperatures below freez-

ing. Their background error value was set to 0.1 g kg21.

When these three species are adjusted by the 3DVAR

analysis, consideration is taken to also slightly adjust

u owing to latent heat exchange during phase changes

(Albers et al. 1996; Zhang et al. 1998; Brewster 2002; Hu

et al. 2006a,b). While it is also possible to adjust qy (or

relative humidity) when assimilating radar reflectivity,

qy is solely adjusted by the lightning observations to

avoid overlap and to facilitate the interpretation of

the results (F16). To better extract convective-scale

information (Gao et al. 2013), each 3DVAR analysis

for the reflectivity factor employs two successive

passes with respective horizontal decorrelation length

scales set to 24 and 12 km. In the vertical, the decor-

relation length for each of the two passes was set to 4

and 2 grid points, respectively. These decorrelation

lengths for the reflectivity factor are applied to all its

associated control variables, namely rain, snow and

graupel/hail mass mixing ratio. The background error

variances for the u, y component of the wind, u, and

pressure are derived from statistics of the 13-km RUC

3-h forecasts in spring seasons over several years and

the background error correlations are modeled by the

recursive filter from Purser et al. (2003a,b).

In the 3DVAR analysis, the radial velocity data are

used to adjust the three Cartesian components of

the wind field. For the first and second 3DVAR pass,

the control variables for the wind field use horizontal

decorrelation length scales of 12 and 6 km, respectively.

In the vertical, a decorrelation length of two grid points

was used for both 3DVAR passes. Although not con-

sidered in this work, both u, and the pressure fields

could also be adjusted if other types of observations

such as mesonet/sounding data were also assimilated.

There are no assumed cross correlations between the

wind field, u and pressure.

Reflectivity and radial velocity data were used from 11

radar sites (Fig. 2). These sites were selected to provide a

reasonable coverage of all the main storms during the

target period of analysis, particularly above ;3 km

AGL where the scan volumes overlap (Zhang et al.

2011; Gao et al. 2013). Observations for reflectivity

values #20 dBZ are discarded for altitudes below

1.5 kmAGL and#15 dBZ at higher altitude in order to

reduce unwanted influence of weak radar returns or

nonmeteorological scatters.

2) LIGHTNING

Using a similar procedure as Fierro et al. (2018a),

the raw, 20-s GLM total flash data first are accumu-

lated into a 1-h interval prior to 0000 UTC 7 June

and converted into gridded flash density rates (units of

9 km22 h21). Given the latitude and longitude points of

theWRF grid, the projection of theGLMflash longitude

and latitude centroids onto the model grid is relatively

straightforward (Fierro et al. 2018a). For simplicity, this

GLM-derived lightning metric is referred to as ‘‘flash

origin density,’’ because it purposively does not consider

the areal extent of the flashes (Fierro et al. 2018a) to

restrict the impact of the LDA near convective cores

(Fierro et al. 2018b).

As mentioned in the introduction, the general

LDA practice herein follows a philosophy similar to F16

wherein the intended use of total lightning observations

is to derive, and then assimilate pseudo observations for

qy. At each grid point (i, j) where the GLM flash density

rate exceed zero, the LDA creates pseudo observations

for qy by adjusting at that horizontal location (i, j) the

background qy value within an assumed fixed depth of

3 km above the lifted condensation level (LCL, a sur-

rogate for cloud base). At each grid points within this

3-km deep layer, the background qy value is adjusted to

its near-saturation value (set to 95%) with respect to
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water substance (qysat) provided that the background

qy does not already exceed that value. In other words,

if the background qy value at a grid point within one

of these 3-km-deep, nonzero GLM columns already

equates, for instance, 0.983 qysat this value will be used

as pseudo-observation for qy instead of 0.953 qysat. The

use of a fixed, shallower depth above the LCL compared

to a fixed top height of 15 km above the LCL in F16,

confines the adjustments within the moisture-rich layer,

which, as shown by F16, yields nearly identical forecast

improvements. Because the LCL exhibits notable vari-

ations as a function of season and geographical areas,

the current implementation limits the maximum height

of the LCL computed at lightning locations to 2 km

above mean sea level (MSL). Tests using larger maxi-

mum LCL heights up to 3.5 km yielded overall similar

results (not shown). The primary effect of this proce-

dure is to enhance the influence of qy adjustments in

higher-LCL areas such as: (i) higher terrain, (ii) drier

environment/boundary layer, and (iii) cold season. This

additional refinement relative to F16 partially alleviates

the seasonal and geographical dependence of the LDA

scheme. Similar to F16, the qy increases are not made

proportional to the observed GLM gridded density

rate. In contrast to F16, no arbitrary lower cutoff thresholds

for flash density rates were used to differentiate between

missing andvalid observations points. Simply put,wherever

the GLM-observed gridded hourly flash density rate is

zero, the pseudo qy observations are not created and the

control variable for qy is set to an arbitrary (large neg-

ative) value flagged by the 3DVAR system as a missing

observation. Owing to the relatively recent availability

of GLM data, no additional quality control algorithm is

applied to lightning products, which already have a

quality control procedure, and, thus, all pseudo obser-

vations for qy are assimilated (i.e., none are rejected).

Once created, these pseudo qy observations are then

assimilated through the 3DVAR analysis. As in F16, the

observation error for qy was set to 33 1023 kg kg21 and

the background error for qy is set to 10 3 1023 kg kg21.

The larger background error value gives more weight to

the observations during the 3DVAR analysis. Because

the current code setup only permits separate namelist

entries for the decorrelation length for the assimila-

tion of the reflectivity factor, the vertical and horizon-

tal decorrelation lengths used for qy (i.e., assimilation

of lightning) are the same as for the three Cartesian

components of the wind field (i.e., assimilation of radial

velocity). Namely, the control variable for qy uses hor-

izontal decorrelation length scales of 12 and 6km for

the first and second 3DVAR pass, respectively. In the

vertical, a decorrelation length of two grid points was

used for both 3DVAR passes. Lightning was assimilated

only on the second 3DVARpass, as F16 and Fierro et al.

(2018b) found that qy adjustments were most effective

on horizontal length scales of 10 km or less.

As noted in the introduction, an additional refinement

to F16’s LDA method was devised in which the total

amount of qy mass added during the creation of the

qy pseudo observations is compensated by an equal

removal outside lightning locations to maintain

global mass conservation (experiment GLM CONS).

To achieve this, the total qy mass added by the LDA

scheme is divided by the total sum of grid points

outside the lightning areas. The gridded averaged qy
mass is then weighted by the air density value at each

grid point and subtracted from the background qy
value at that grid point. Owing to the generally small

areal coverage/footprint of the total area containing

nonzero flash density rates (e.g., Fig. 3a), the (density-

weighted) averaged qy mass that is removed per grid

point is generally quite small (maximum on the order

of 9 3 1025 g kg21 herein) and, thus, is not expected

to significantly impact any improvements seen in the

original GLM experiment. Auxiliary sensitivity tests

(not shown) revealed that these incremental negative

adjustments in qy outside the lightning areas have neg-

ligible effects on spurious convection. Although the qy
adjustments in the pseudo observations are balanced,

this is not necessarily guaranteed for the qy fields pro-

duced by the 3DVAR analysis. With this methodology,

however, the post 3DVAR departure from balance in

the analyzed qy fields will generally be small.

5. Results

For all the simulations, focus is primarily directed

on the two MCSs that developed in central Iowa and

western Nebraska (section 2, Fig. 3b). Isolated non-

severe convection that developed in the domain will

be discussed whenever appropriate to highlight issues

related—for instance—to spurious convection.

a. Initialization

A broad depiction of how each DA experiment

adjusts the qy field is shown in Fig. 4. As antici-

pated from the small horizontal decorrelation length

scale chosen for lightning (6 km), the layer-averaged

(z 5 3–7 km MSL) qy values at observed lightning lo-

cations (Figs. 3a and 4a) have adjustment areas (in-

creases) in GLM-based DA experiments that closely

match the lightning observations (Figs. 4b,c,e), which

helps to avoid the development of unrealistically

wide updrafts that could occur for larger length scales

(F16; Fierro et al. 2018b). The relative increases in

layer-averaged qy range from aminimum of 0.2 to values
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exceeding 2 g kg21 (Figs. 4g,h; maximum of about

4.5 g kg21). The latent heating–related qy adjustments in

the radar-only DA experiment (RAD, Figs. 4d,i) are

overall quite small (,0.1 g kg21, Fig. 4i). Figure 4i also

highlights the nearly identical qy fields produced by

GLM and GLM CONS. Worth noting are the generally

smaller differences in qy fields between RAD 1 GLM

and CTRL compared to between GLM and CTRL

(Figs. 4g,h), which arise from the latent heating ad-

justments imposed by the variational assimilation

scheme for radar reflectivity. Although the 3DVAR

scheme adjusts the mass of particular hydrometeors

within specific temperature ranges (Gao and Stensrud

2012), the condition of near saturation (RH 5 95%) im-

posed by GLM is deemed too large by the latent-

heating constraints of the radar reflectivity 3DVAR

algorithm and, thus, is offset accordingly.

To provide a brief quantitative appreciation of some

of the departures from observations in the initial con-

ditions of CTRL, a skew T–logp sounding analysis

(Fig. 5) was performed at North Platte (LBF NWS site),

western Nebraska, which was broadly representative

of the prestorm environment for one of the main MCSs

in this analysis (e.g., Figs. 1 and 3b). Soundings taken

within a ;50-km distance from that point and away

from active convection revealed overall very similar

profiles and, hence, bulk kinematic/thermodynamic

measures (not shown). Overall, the analyzed tempera-

ture and wind profile exhibits relatively good agreement

with the observations (Figs. 5a,b). Over the area of in-

terest (Nebraska and Iowa), however, the 2-m temper-

ature fields from the RAP analysis and NAM analysis

in CTRL exhibit spatial differences on the order of

1–2K. Larger departures are seen where convection

FIG. 4. (b)–(f) Horizontal cross sections at 0000 UTC 7 Jun 2018 (analysis time) of the z 5 3–7 km MSL, layer-averaged qy (g kg
21)

following the 3DVAR analysis for all the experiments listed and described in Table 1 with (a) showing, again, the GLM-derived flash

densities of Fig. 3a, to better highlight and discern the locations where qy adjustments were made. (g)–(i) Differences between themain

DA experiments and CTRL, with (i) also showing the difference between the original GLM experiment and GLMCONS. Note that in

this, and subsequent figures, simulation results for each experiment will be shown in the same order as listed in Table 1, for convenience.
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was analyzed (Figs. 3b and 5c) but not yet present in

the model (Fig. 5d) along the nearly zonal stationary

boundary across Nebraska and Iowa (Fig. 1).

Figures 5a and 5b reveal, most importantly, relatively

larger differences in dewpoint profile, with a gener-

ally moist bias of about 2 g kg21 in the model between

about LCL–700 hPa. Such departures from the ob-

servations for moisture remain particularly critical

below cloud base, as highlighted by the subsequent

noteworthy differences in mixed layer CIN and CAPE

between the model and the observations (Figs. 5a,b).

b. Forecast results: Single 3DVAR analysis
experiments

Although CTRL is able to produce some of the ob-

served storms already 1 h into the forecast (Figs. 6a,b),

all GLM-based DA experiments help hasten the de-

velopment of some of these storms further, such as the

FIG. 5. SkewT–logp plots at 0000UTC 7 Jun 2018 of (a) the North Platte, NE (LBF), NWS radiosonde site in comparison with (b)WRF

forecast sounding in the closest grid column to LBF. The mixed-layer sounding parameters shown on the upper-right of each panel are

computed through the lowest 90mb, which characterizes the deepening convective boundary layer. The cyan and orange curves are the

virtual temperature profiles of the environment and the lifted parcel, respectively (i.e., from which the integrated virtual buoy-

ancy is derived to compute CAPE and CIN). Wind vectors are plotted with full barb 5 5m s21, half barb 5 2.5 m s21, and filled

triangle5 25 m s21. To facilitate comparison, the WRF Model sounding temperature and dewpoint from (b) is overlaid in (a) as solid

and dashed black curves, respectively. (c),(d) The 0000 UTC 2-mAGL temperature fields from the RAP analysis and the CTRL simulation,

respectively. The location of the NWS operational sounding site at LBF is indicated by a black star, for reference. Sounding data for (a) are

provided by the University of Wyoming public database (http://weather.uwyo.edu/upperair/sounding.html).
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organized cluster of storms in central Iowa or some of

the isolated cells in northern Wyoming (Fig. 6). In some

cases, the GLM DA initiates observed storms that were

still absent in CTRL at this point in time as evidenced

by the presence of radar echoes exceeding 40 dBZ

in eastern and western central Nebraska, north- and

southeastern Colorado (Fig. 6). This case also high-

lights the inability of RAD and/or GLM to effectively

suppress the weaker, isolated spurious convection

over Colorado and northern New Mexico (Fig. 6a).

Composite reflectivity fields six hours into the

forecast (Fig. 7) underscore (i) how the more timely

FIG. 6. Composite radar reflectivity fields (dBZ) at 0100 UTC 7 Jun 2018 (i.e., 1 h forecast) for: (a) the 1-km resolution, MRMS product

(observations) interpolated onto the 3 km simulation domain, (b) CTRL, (c) GLM, (d) RAD, (e) RAD 1 GLM, and (f) GLM CONS

experiments. Legends for color and shadings are shown in (a).
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development of the observed storms in the GLM-based

experiment helps improve the placement and intensity of

themain observedMCS in western Nebraska, and (ii) how

some of the cells that were properly initiated in all simu-

lations (including CTRL) in northern Wyoming (Fig. 7)

are not decaying 6h into the forecast. None of the simu-

lations is able to reproduce the smaller, linear cluster of

storms in southern South Dakota (Fig. 7a), which devel-

oped at about 0400 UTC in the observations (not shown)

and had no radar echoes or lightning at the 0000 UTC

initialization time. The erroneous storms in eastern

Colorado and northeasternNewMexico inCTRL (versus

decay in the observations; Figs. 7a,b) are notable in all

experiments (Figs. 7c–f) as they are not affected by theDA.

FIG. 7. As in Fig. 6, but at 0600 UTC 7 Jun 2018 (i.e., 6-h forecast).
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To provide a more complete view of the forecast per-

formance, the accumulated precipitation (APCP) fields

were evaluated in each simulation. Figure 8 generally

highlights that although the DA experiments are able to

improve the areal coverage of 6-hourly APCP , 40mm,

they also generally overpredict the coverage for amounts

exceeding 50mm. This issue persisted, and was even

exacerbated, when other microphysical schemes were

tested such as the Hong and Lim (2006) single-moment

6-class scheme (WSM6) or the Thompson et al. (2004)

FIG. 8. As in Fig. 6, but for the 6-h accumulated precipitation fields (APCP in mm) with the observations in (a) derived from the stage IV

multisensor rainfall estimates.
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scheme (not shown). This is in line with F15, which

underscored that any wet biases present in a simu-

lation assimilating no data could only be exacerbated

by DA schemes promoting further development of

convection, especially when spurious storms are not

addressed.

c. Overall forecast evaluation

To quantify the performance of composite reflectivity

and APCP forecasts in each experiment, the remainder

of this analysis will focus on discussing results for two

neighborhood-based scores: (i) equitable threat score

(ETS; Clark et al. 2010) and (ii) fractions skill score (FSS;

Roberts and Lean 2008) relative to the stage IV obser-

vations and relative to the MRMS composite reflectively

fields. Both score metrics were computed for neighbor-

hood radii ranging between 3 and 30 km (i.e., grid point

based up to 10 grid points) for each of the following

thresholds: 20, 30, and 40dBZ for composite reflectivity

and 1, 5, and 10mm for APCP. Scores for APCP are

computed for hourly intervals (i.e., mmh21) and scores

for composite reflectivity use the instantaneous values.

To complement the scores and provide an additional

measure of over or underprediction, the frequency bia-

ses (referred to as bias for brevity) were also computed.

No bias correction for either score metrics was applied,

given their overall negligible impact (F15), especially

when biases are overall low (i.e., ,2.5; see later in the

section). Although the ETS has been widely used as a

metric to quantify the skill of a forecast for a given

quantity, several studies have posited that FSS is an at-

tractive and, arguably, more accurate measure of skill

on convection-allowing grids (Mittermaier et al. 2013),

because, in contrast to the ETS, FSS provides a quan-

titative measure of goodness and usefulness, which adds

to the understanding of true forecast skill.

FIG. 9. Equitable threat scores (ETSs) of the simulated composite radar reflectivity fields relative to the MRMS observations over the

simulation domain in Fig. 2 starting from 0100UTC (1-h forecast) and ending at 0600UTC 7 Jun (6-h forecast). Scores at the analysis time

(0000 UTC) are not shown given that all simulations either have zero or very small reflectivity values. ETSs are shown for five different

neighborhood radii (legend shown in each panel) and for three specific (composite) reflectivity thresholds indicated on each row, namely:

(a)–(e) 20 dBZ, (f)–(j) 30 dBZ, and (k)–(o) 40 dBZ. For each of these thresholds, ETSs are presented from left to right for all five

experiments in the order listed in Table 1, for convenience.
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In terms of composite radar reflectivity fields, the

GLM-based experiments produce generally larger ETSs

than either RAD and CTRL, especially at the 20- and

30-dBZ thresholds (Fig. 9). Given the stark similarity in

the analyzed qy fields in Fig. 4 and forecast composite

reflectivity fields (Figs. 6 and 7), both GLM and GLM

CONS produce nearly identical ETSs at all thresholds;

which is encouraging as this confirms that imposing

qy conservation prior to applying the 3DVAR analy-

sis does not degrade nor impact any existing gain in

forecast performance. As the reflectivity threshold is

increased from 30 to 40 dBZ (Figs. 9k–o) or even

50 dBZ (not shown), the ETSs decrease owing to

the progressively smaller areal coverage of larger

reflectivity areas. The relatively reasonable perfor-

mance of CTRL in forecasting composite reflectivity

fields at 1 h is evidenced by ETSs on the order of

0.4–0.5 at larger radii for the 20 and 30 dBZ thresh-

olds, yielding to ETS differences between any of the

DA experiments and CTRL generally not exceeding

0.2 (not shown).

For composite reflectivity, generally similar trends

and behavior are obtained for the FSS (not shown).

For the GLM-based experiments, the FSS for the lowest

threshold (20dBZ) is characterized by larger values

than the ETS and, conversely, by notably lower values

as the dBZ threshold is increased. Despite this, the

overall differences in FSS scores relative to CTRL are

very similar to those with the ETS at all thresholds

(not shown).

In terms of APCP, the ETSs for the GLM-only

experiments still hint at a generally similar improve-

ment relative to CTRL (Fig. 10). A stark difference

with composite reflectivity, however, is seen for the

RAD-based experiments, which produce superior

scores during the first hour of forecast with maximum

values nearing 0.8 at all thresholds (Fig. 10). The largest

improvements relative to CTRL are seen for RAD 1
GLM at 10mm (Figs. 10n,k). Given notably lower ETSs

in CTRL for APCP compared to composite reflectivity

(cf. Figs. 9a,f,k and 10a,f,k), the ETS differences relative

to CTRL are more pronounced for APCP with

FIG. 10. As in Fig. 9, but for hourly accumulated precipitation (APCP in mm) computed for the following three thresholds: (a)–(e) 1mm,

(f)–(j) 5mm, and (k)–(o) 10mm.
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maximum values ranging between 0.6 and 0.8 for the

RAD-based experiments during the first hour of fore-

cast compared to values below 0.2 for composite re-

flectivity (not shown). Note again, however, how any

forecast improvements in the very early portion of the

forecast (#1.5 h) are quickly lost later on (Fig. 10).

Results for the FSSs gave, overall, a very similar im-

pression (not shown).

To provide an alternative and more concise interpre-

tation of the overall performance of the short-term

forecasts for both rainfall and composite reflectivity,

categorical performance diagrams (Roebber 2009) were

computed, which conveniently merge the information

derived from key contingency table elements, namely:

frequency bias, probability of detection (POD), critical

success index, and success ratio (one minus the false

alarm rate). The diagrams for composite reflectivity

emphasize how, at 1-h forecast, GLM produces the best

overall performance as measured by higher success ratio

and POD (Figs. 11a–c), and, similarly, highlight the

clearly superior performance of RAD at 1 h for rainfall

(Figs. 11d–f). These diagrams also underscore concisely

how any gains in forecast skill for RAD at 1-h for either

rainfall or reflectivity are substantially reduced at 6 h.

Note also how, in contrast to F15’s nudging method,

GLM is able to improve the rainfall and reflectivity

FIG. 11. Performance diagrams at 1- and 6-h forecast assuming a neighborhood radius of 30 km (10 grid points) for (a)–(c)

composite reflectivity fields relative to the MRMS observations using the same thresholds as in Fig. 9, namely 20, 30, and 40 dBZ,

respectively. (d)–(f) As in (a)–(c), but for accumulated precipitation, again for the same thresholds as in the previous figures:

namely 1, 5, and 10 mm, respectively. In each plot, the lower-left corner stands for no forecast skill and, similarly, the upper-right

corner indicates perfect skill. Purple curves represent the critical success index (CSI), and the diagonal gray lines the frequency

bias. The colored dots show the results for the main experiments with legends shown at the bottom of the figure. The number inside

each dot represents the forecast time in hour.

4060 MONTHLY WEATHER REV IEW VOLUME 147

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/11/4045/4880616/m
w

r-d-18-0421_1.pdf by N
O

AA C
entral Library user on 11 August 2020



forecast without significantly affecting the bias relative

to CTRL (bias remains below ;2.5, Figs. 11a–c). One

potential explanation for this modest increase in bias in

the GLM-based experiments could be the usage of a full

hour of lightning rather than a shorter accumulation (e.g.,

15–20min). For instance, the reflectivity areas ($40dBZ)

of the storm in northeast Colorado at 0000 UTC appears

larger-than-observed (Figs. 6a,c), because the lightning

area (Fig. 3a) is wider than the$40dBZ reflectivity areas

at 0000UTC (Fig. 3b).At 1h,RAD1GLMproduces the

best results by bringing the bias closer to 1, which is

partially due to the smaller qy adjustments relative to

GLM during the 3DVAR analysis (F16; Fig. 4).

d. 3DVAR analysis experiments with successive
cycling

1) FORECAST RESULTS SUMMARY

The short-term (#3 h) forecast of reflectivity and

accumulated rainfall exhibit overall similar behavior

as the original DA experiments (e.g., compare Figs. 12

and 6). In terms of score, the cycled GLM experiment

performs best for both reflectivity and accumulated

rainfall at 1 and 6-h forecast (Fig. 13). In general, all

cycled DA experiments exhibited better skill than their

original counterparts (cf. Figs. 11 and 13). For theGLM

cycling, one notable difference is a tendency to over-

estimate moderate-to-large reflectivities (.30 dBZ), as

evidenced in Fig. 12 by their larger areal coverage

and in Fig. 13 with the green dots systematically lo-

cating closer to the upper-left corner of the plot (i.e.,

progressively higher bias, ranging between 1.5 and 2

at 40 dBZ). A closer inspection of the data for each

(of the six) individual 3DVAR cycles revealed that

the overestimation of .30 dBZ reflectivities in the

GLM cycling experiment can be traced back to the

fact that the areal coverage of nonzero flash densities

(per 10min herein) does not differ significantly from

the respective coverage of the hourly rates in Fig. 3a

(not shown). Thus, at each cycle, the LDA adjusts (i.e.,

increases) water vapor mass over an area similar in size

to that of the original GLM experiment, yielding pro-

gressively stronger convection. Future research withDA

cycling is planned to address this drawback.

2) DA METRICS

To better assess the quality and performance of the

DA during the cycled 3DVAR procedure, the re-

mainder of this analysis will focus on examining key

statistics including the variation of total cost function,

root-mean-square (rms), and means (bias) for the in-

novation and analysis residuals during the DA cycles

(as defined in e.g., Daley 1993; Lindskog et al. 2004).

The cost function is defined by the sum of weighted

Euclidian distances between the analysis and the background

field, and between the analysis and the observations. The

cost function used for this study is defined by Eq. (1) in

Gao et al. (2013). During the minimization process, the

cost function usually decreases with iterations.

In simple terms, the rms innovation statistics (referred

to as rms_innov) provide a measure of the Euclidian dis-

tance between the observations and the background fields:

rms_innov5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i51
[yoi 2H(xbi )]

22

r
, (1)

where N is the number of observations, H(x) is a continu-

ous functionmapping the background fields (superscript b)

from model space to observation space (superscript o).

Similarly, the rms analysis residual (referred to as rms_res)

is a measure of the Euclidian distance between the ob-

servations and the analysis:

rms_res5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i51
[yoi 2H(xai )]

22

s
, (2)

with the subscript a standing for analysis.

In a similar manner, it is possible to determine if

the DA procedure generates any biases for each control

variables by analyzing the mean innovation (m_innov):

m_innov5
1

N
�
N

i51
[yoi 2H(xbi )] (3)

and mean analysis residual (m_res):

m_res5
1

N
�
N

i51
[yoi 2H(xai )] . (4)

Because these statistics were qualitatively similar for

both 3DVAR passes and because convective scales are

emphasized herein, only the results for second 3DVAR

pass are discussed.

Generally speaking, all DA experiments show a re-

duction in the total cost function with the GLM exper-

iment producing the largest relative decrease (exceeding

80%) at the end of the 30 iterations (Fig. 14a) com-

pared to about a 20%–30%decrease for theRAD-based

experiments. Given the notably larger amount of ob-

servations being assimilated in the RAD-based experi-

ments (i.e., volumetric scans versus 2D fields for the

GLM), and nonlinearity of reflectivity observations, the

cost function reduction rate is relatively small relative to

the GLM experiment (Figs. 14b,c).

The rms_innov for the GLM experiment generally

decrease with the DA cycles (Fig. 14d). This indi-

cates the model gradually absorbs the qy information

from assimilating GLM data reasonably well. For the
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RAD-based experiments, rms_innov for the GLM-based

pseudo qy and radial velocity data slightly decrease

with the DA cycles indicating that GLM (pseudo qy)

and radial velocity information are properly assimi-

lated (Figs. 14e,f). The gradual increases of rms_innov

for reflectivity data (Figs. 14e,f), however, reflect the

model’s difficulty in properly absorbing precipitation-

related information from reflectivity data (by adding too

much reflectivity). In addition to model forecast error,

one likely factor is that reflectivity factor exhibits a com-

plex, nonlinear relationship with the model’s hydrometer

variables. Additionally, the gradual increase in storm

coverage with each successive 3DVAR cycle may also

contribute the increase of rms_innov for reflectivity.

The rms_res statistic (Figs. 14d–f) represents how

close the analyses are to the observations at the end

of the 3DVAR minimization procedure. All values

for rms_res are smaller than the corresponding values

FIG. 12. As in Fig. 6, but for the 3DVAR cycling

experiments.
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for rms_innov indicating that the analysis is closer to the

observations for all types of observations after each DA

cycles (Figs. 14d–f). Again, for GLM and radial velocity

data, the values for rms_res do not change too much

during the assimilation cycles indicating that the analy-

sis generally fits these data reasonably well. While the

assimilation of reflectivity is generally reasonable, the

fact that rms_res increases still indicates a growing dif-

ficulty for the analysis to fit reflectivity observations. As

discussed above for rms_innov, the nonlinearity of the

cost function for reflectivity, in addition to phase errors

and the development of spurious convection may play a

role. Addressing these issues, will be deferred to future

work more focused on radar data retrievals.

The innovation and analysis residual means or biases

(m_innov and m_res) for qy are generally positive

(Figs. 14g,i), indicating that, overall, the background

and analyzed values for qy are lesser than the target

(near saturation) pseudo qy observations; especially

for the RAD-based experiments (in line with Fig. 4).

Both m_innov and m_res for radial velocity are nearly

identical and close to zero (Figs. 14h,i) consistent with

the rms statistics in Figs. 14e and 14f indicating that,

overall, the analyzed radial velocity field is getting closer

to the observations. For reflectivity, the innovations

exhibit a positive bias (;2 dBZ) while, in contrast, the

residuals are negatively biased (;21 to 22 dBZ,

Figs. 14h,i). This further illustrates the growing difficulty

of theDA to optimally ingest, for this case, the wealth of

3D reflectivity information into the system.

6. Summary and future work

This study evaluated the adaptation of a cloud-scale

LDA method in the 3DVAR variational framework for

total lightning densities derived from the spaceborne

FIG. 13. As in Fig. 11, but for the 3DVAR cycling experiments.
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FIG. 14. (a)–(c) Normalized total cost function as a function of iteration number for the (a) GLM, (b) RAD, and (c) RAD 1 GLM

experiments. The cost function curves are color-coded for each 3DVAR cycles following the legends shown in (a). (d)–(f) Root-mean-

square statistics for the innovation (solid curve) and analysis residual (dotted curve) for water vapormass (qy in kg kg
21, black), reflectivity

factor (REFL in dBZ, blue), and radial velocity (Vr in m s21, red) as a function of 3DVAR cycle for the (d) GLM, (e) RAD, and (f) RAD1
GLM experiments. (g)–(i) As in (d)–(f), but for the bias (or mean) statistics.
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GLM instrument. To gauge the potential added value of

the assimilation of lightning data, companion experi-

ments assimilating no data (CTRL) or conventional

NWS Level II radar data (radial velocity and radar

reflectivity) with or without lightning were conducted.

In addition to adapting the LDA method of F16 to

GLM data, several refinements to the lightning and ra-

dar DA procedures were examined: (i) the GLM as-

similation features an option to compensate the water

vapor mass added at lightning locations with equal re-

moval outside lightning areas, (ii) regional and seasonal

dependence of the scheme (implicit in the conditionals

for LCL) were partially alleviated, (iii) in contrast to

F16, no cloud analysis scheme was used to assimilate

radar reflectivity (i.e., all the observations herein were

assimilated in a unified 3DVAR framework), and (iv) no

arbitrary positive cut off thresholds for the flash rate are

employed to identify convectively active areas.

During the course of 2018, several experiments were

performed in quasi–real time over regional domains

systematically positioned over the eastern two-thirds of

the contiguous United States. For the sake of brevity

and simplicity, this study reports the salient findings

based on one illustrative case study in which the DA of

either radar or GLMdata improved the forecast in some

areas of preexisting convection but not in other regions

where convection had not yet developed. Last, this case

was selected to underscore some salient limitations of

the LDA scheme such as, for instance, its inability to

effectively suppress spurious convection.

Overall, assimilation experiments including either

radar or GLM lightning data yielded short-term forecast

improvements that were similar to those reported in F15

and F16. Akin to these and other studies, any gains

in composite reflectivity or rainfall forecast skill sys-

tematically seen during the first 1–1.5 h are gradually

lost, and improvements over CTRL are negligible af-

ter about 3-h. This result held true for both the

neighborhood-based equitable threat and fractions

skill scores. As indicated in F15, this is primarily caused

by the growth of bothmodel and initial condition errors

that limit predictability.

An analysis focused on examining key 3DVAR

statistics that included the variation of the total cost

function, root-mean-square and means (bias) for the

innovation and analysis residuals during the DA cycles

revealed that, overall, the radial wind and proxy variable

used for the GLM lightning (i.e., qy) were well assimi-

lated by the system. For radar reflectivity factor, how-

ever, the nonlinearity of the cost function for reflectivity,

coupled with potential phase errors and the develop-

ment of spurious convection resulted in a slightly less

effective assimilation for this case. Subject to ongoing

work, real-time regional forecasts conducted during

spring of 2019 revealed an overall improvement of this

drawback.

As mentioned above, one of the critical limitations of

the LDA scheme examined here lies in its inability to

suppress spurious convection. Preliminary research is

underway, however, to consider this capability. Reflec-

tivity data in both the observations and background

fields will be employed to target more accurately areas

where convection must be suppressed. For instance, this

could be achieved by imposing, a negative adjustment in

qy (or other proxy variables for convection) at locations

in the background with reflectivity areas representative

of convective rainfall (e.g., .30dBZ) not supported by

the observations. Where radar data are nonexistent or

sparse, the suppression method could alternatively

exploit spaceborne datasets able to reveal the presence

of convection such as brightness temperature or specific

spectral bands of all-sky radiance data [e.g., Advanced

Baseline Imager instrument on board GOES-16/17;

Goodman et al. (2013)]. Following the strategy of the

NSSL Experimental Warn-on-Forecast System for en-

sembles (NEWS-e; Jones et al. 2016), work is also un-

derway to implement and gauge the impact of the above

DA procedure using high frequency (10–15min) succes-

sive 3DVAR cycling. To better gauge the added value of

the GLM, these tests will also focus more systemati-

cally on convection evolving over data sparse areas,

such as the mountainous terrain of the western United

States or the vast regions offshore such as the Gulf

of Mexico.

Future work will also be devoted to examine the

performance of this combined radar and lightning DA

procedure in a hybrid 3DVAR and EnKF system, or

ensemble of 3DVAR framework (Wang et al. 2013;

Gao et al. 2016) to leverage the advantages of ensem-

ble data assimilation and 3DVAR approaches. An-

other research route worth envisaging is incorporating

ensemble-derived inhomogeneous background error

covariance statistics that treat precipitating and non-

precipitating areas separately (Michel et al. 2011). This

is critical given that the background error covariance

matrix plays an important role in variational data as-

similation for spreading increments along the vertical

and horizontal and for achieving balance among cross-

correlated fields.

The areal coverage of nonzero total lightning densities

over sufficiently large regional domains is usually small,

especially when compared to radar data (e.g., Fig. 3) or

other spaceborne datasets (e.g., brightness tempera-

ture). The 2018 near-real-time tests revealed one note-

worthy limitation for assimilating lightning data: for

larger convective systems characterized by warm rain
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microphysics (e.g., tropicalMCSs, including hurricanes),

the aggregate impact of adjusting convective-scale proxy

variables for lightning (such as qy) near or within

lightning areas is generally small. For tropical cyclones

[e.g., Hurricane Michael (2018)], assimilating lightning

data over regions devoid of radar data was found to have

negligible impacts on track and intensity prediction. On

some occasions, however, the LDA alone was able to

better forecast the placement and intensity of lightning-

active outer rainbands (consistent with Fierro and Reisner

2011; Fierro et al. 2015b), which often are associated with

hazardous weather at landfall such as quick tornado spin

ups or localized flash flooding. Thus, future research

should combine lightning information with auxiliary data

sources, which are able to better characterize the nature of

clouds and convection beyond the more confined, electri-

cally active areas detected by the GLM.

Acknowledgments. Funding was provided by

NOAA/Office of Oceanic and Atmospheric Research

under NOAA-University of Oklahoma Cooperative

Agreement NA11OAR4320072, U.S. Department of

Commerce. This work was further supported by the

National Oceanic and Atmospheric Administration

(NOAA) of the U.S. Department of Commerce under

Grants NOAA-NWS-NWSPO-2016-2004610 (Award

NA16NWS4680024) and NOAA-NWS-NWSPO-2018-

2005317 (Award NA18NWS4680063). The simulations

were conducted on the NOAA HPC ‘‘Jet’’ resources

housed in Boulder, CO. Auxiliary computer resources

were provided by the Oklahoma Supercomputing

Center for Education and Research (OSCER) hosted at

the University of Oklahoma. Thanks go out to Nusrat

Yussouf for providing useful suggestions on an earlier

version of this manuscript. Last and foremost, the

authors would like to express their gratitude to Editor

Dr. Altug Aksoy and two anonymous reviewers for

their insightful and constructive comments that helped

improve the quality of this manuscript.

REFERENCES

Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase compar-

ative assessment of the ensembleKalman filter for assimilation of

radar observations. Part I: Storm-scale analyses.Mon. Wea. Rev.,

137, 1805–1824, https://doi.org/10.1175/2008MWR2691.1.

Albers, S.C., J.A.McGinley,D.L.Birkenheuer, and J.R. Smart, 1996:

The Local Analysis and Prediction System (LAPS): Analyses

of clouds, precipitation, and temperature. Wea. Forecasting,

11, 273–287, https://doi.org/10.1175/1520-0434(1996)011,0273:

TLAAPS.2.0.CO;2.

Albrecht, R., S. Goodman, D. Buechler, R. Blakeslee, and

H. Christian, 2016: Where are the lightning hotspots on

Earth? Bull. Amer. Meteor. Soc., 97, 2051–2068, https://

doi.org/10.1175/BAMS-D-14-00193.1.

Alexander, G. D., J. A. Weinman, V. Karyampudi, W. S. Olson,

and A. C. L. Lee, 1999: The effect of assimilating rain rates

derived from satellites and lightning on forecasts of the 1993

Superstorm. Mon. Wea. Rev., 127, 1433–1457, https://doi.org/

10.1175/1520-0493(1999)127,1433:TEOARR.2.0.CO;2.

Allen, B. J., E. R. Mansell, D. C. Dowell, and W. Deierling, 2016:

Assimilation of pseudo-GLM data using the ensemble

Kalman filter.Mon.Wea. Rev., 144, 3465–3486, https://doi.org/

10.1175/MWR-D-16-0117.1.

Baldwin, M. E., and K. E. Mitchell, 1997: The NCEP hourly mul-

tisensor U.S. precipitation analysis for operations and GCIP

research. Preprints, 13th Conf. on Hydrology, Long Beach,

CA, Amer. Meteor. Soc., 54–55.

Benjamin, S.G., andCoauthors, 2004:An hourly assimilation–forecast

cycle: The RUC. Mon. Wea. Rev., 132, 495–518, https://doi.org/

10.1175/1520-0493(2004)132,0495:AHACTR.2.0.CO;2.

Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman,

2001: Combined satellite- and surface-based estimation of the

intracloud–cloud-to-ground lightning ratio over the continental

United States. Mon. Wea. Rev., 129, 108–122, https://doi.org/

10.1175/1520-0493(2001)129,0108:CSASBE.2.0.CO;2.

Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob

(1991): Storm structure and eyewall buoyancy. Mon. Wea.

Rev., 130, 1573–1592, https://doi.org/10.1175/1520-0493(2002)

130,1573:ACRSOH.2.0.CO;2.

Brewster, K., 2002: Recent advances in the diabatic initialization of a

non-hydrostatic numerical model. Preprints, 19th Conf. on

Weather Analysis and Forecasting/15th Conf. on Numerical

Weather Prediction/21st Conf. on Severe Local Storms, San

Antonio, TX,Amer.Meteor. Soc., J6.3, https://ams.confex.com/

ams/SLS_WAF_NWP/techprogram/paper_47414.htm.

Carey, L. D., and S. A. Rutledge, 1998: Electrical and multiparam-

eter radar observations of a severe hailstorm. J. Geophys. Res.,

103, 13 979–14 000, https://doi.org/10.1029/97JD02626.

Caumont, O., V.Ducrocq,É. Wattrelot, G. Jaubert, and S. Pradier-

Vabre, 2010: 1D13DVar assimilation of radar reflectivity

data: A proof of concept. Tellus, 62A, 173–187, https://doi.org/

10.1111/j.1600-0870.2009.00430.x.

Chang, D.-E., J. A. Weinman, C. A. Morales, and W. S. Olson,

2001: The effect of spaceborne microwave and ground-

based continuous lightning measurements on forecasts

of the 1998 Groundhog Day storm. Mon. Wea. Rev., 129,

1809–1833, https://doi.org/10.1175/1520-0493(2001)129,1809:

TEOSMA.2.0.CO;2.
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